A convergence analysis of the iteratively regularized Gauss--Newton method under the Lipschitz condition

نویسنده

  • Qinian Jin
چکیده

In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A convergence analysis of the iteratively regularized Gauss-Newton method under Lipschitz condition

In this paper we consider the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed inverse problems. Under merely Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense.

متن کامل

Further convergence results on the general iteratively regularized Gauss-Newton methods under the discrepancy principle

We consider the general iteratively regularized Gauss-Newton methods xk+1 = x0 − gαk (F (xk)F (xk))F (xk) ( F (xk)− y − F (xk)(xk − x0) ) for solving nonlinear inverse problems F (x) = y using the only available noise yδ of y satisfying ‖yδ − y‖ ≤ δ with a given small noise level δ > 0. In order to produce reasonable approximation to the sought solution, we terminate the iteration by the discre...

متن کامل

Convergence and Application of a Modified Iteratively Regularized Gauss-Newton Algorithm

We establish theoretical convergence results for an Iteratively Regularized Gauss Newton (IRGN) algorithm with a specific Tikhonov regularization. This Tikhnov regularization, which uses a seminorm generated by a linear operator, is motivated by mapping of the minimization variables to physical space which exposes the different scales of the parameters and therefore also suggests appropriate we...

متن کامل

On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems

The iteratively regularized Gauss-Newton method is applied to compute the stable solutions to nonlinear ill-posed problems F (x) = y when the data y is given approximately by yδ with ‖yδ − y‖ ≤ δ. In this method, the iterative sequence {xk} is defined successively by xk+1 = x δ k − (αkI +F (xk)F (xk)) ( F (xk) ∗(F (xk)− y) +αk(xk − x0) ) , where x0 := x0 is an initial guess of the exact solutio...

متن کامل

A Family of Preconditioned Iteratively Regularized Methods For Nonlinear Minimization

The preconditioned iteratively regularized Gauss-Newton algorithm for the minimization of general nonlinear functionals was introduced by Smirnova, Renaut and Khan (2007). In this paper, we establish theoretical convergence results for an extended stabilized family of Generalized Preconditioned Iterative methods which includes M−times iterated Tikhonov regularization with line search. Numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008